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The mean square wave response of a lightly damped th~viscoelastic

medium to a special type of non-stationary random excitation is determined.

The excitation functian on the ther'-viscoelastic radium is taken in the

farm of a prcduct of a well-defined, slowly varying envelope functian, and

a part which prescribes the statistical characteristics of the excitation.

Both the unit step and rectan~ step functions are used for the envelope

function, and both white noise and noise with an exponentially decaying

harramic correlatian function are used to prescribe the statistical property

af the excitation. By taking into consideratian the slow variation envelope

functian and the wave characteristics of the lightly da~ therrm-viscoelastic

medium, the mean square response  as a function of temperature, excitaticn,

and. damping parameters with the aid of reversible and irreversible th~

dynamics! is evaluated.



A number of recent papers have considered the response of dyrmnic

systems to random excitation. However, the appropriate th~ is well-

knawn for calculating the means quare response of linear systems to both

stationary and non � stationary random excitation jl,2,3]. We consider here

the mean square of waves of a thermoelastic medium to non-stationary random
excitation.

The non-stationary randan excitation is of the form:

s t! = e t! u t!

where e t! is a well-defined envelope function and, m t! is Gaussian narrow

bar@I, stationary statistical part of the excitation which has zero rrean. The

non-stati~ process is generated by mulitplying the samoa functians fram

a staticnary process u t! and the deterministic function e t! .

In this investigation, it, is shcwn that for the linear approximation, the

partial differential equation which prescribes the characteristics of a therrm-

vismelastic medium may be reduced to a well-lamin classical damped harmonic

oscillatcu. fidel by applying the fourdizmnsional Fourier � Hilbert transfarm.

The transport coefficients af a thermo-viscoelastic medium can be class-
t

ified as  i! ccmpressional wave parameters such as CL and K~  K~ is ~ressed
2in ~ of Larre' coefficients as K~ = Xt + � p~ !, and  ii! cczrpressional

and shear viscous paranmters such as AT' and p".

Zt is further shown that XT' has two parts; i.e., A" is the usual well-kncwn

temperature independent compressional viscous parameters. 'Ihe s~ part,

A~, is the temperature dependent campressional viscous pararoeter ard is abtained

via Onsager relations by errploying a technique developed by Zringen [la].



Eringen's thernxrvismelastic theory  within the framework of linear

irreversible processes is applicable to the Kelvin-Voigt solid! has a different
purpose I,lcj than what we have in this investigation  We are not interested in
heat. conduction phenomena, reversible or irreversible! . Our p~e in this
investigation is to determine the acoustical mean square response of a therrm-
viscoelastic medium and how the campressional sound waves dissipated. in this
medium, by using this information to prescribe the macroscopic properties of
the vismelastic materials.
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which are illustrated in Figures �! and �!.

Defining the external input excitation as s t! = e t!a t!, we can write

the compressional wave system response as

r  t! ~ dt' s t'! G k; t-t'! = J 2 G k;u>! s z! eI du! iz t-t'!

In this paper, we shall determine the mean square response E[r  t! j when

e t! is a unit step as well as a rectangular step function and. ot t! has the

correlation functions: R  r! = 2' 6  t! for the white noise; and
0 0

R  T! K e cosQt for the correlated noise. Here, T is the time difference-01
G 0

t2-tl

where q t-t'! = 1, when t > t' and 0 then t < t'  see Appendix Il! .

For real e, the Green's function is usually divided into two parts: a

dissipative part and a reactive part. In this case, these are given respectively,

by the imaginary and real parts of G k;z! and are denoted as G"  k;I! and

G'  k;u!  as illustrated in- Figvx'es �! and �!, and G k,t! is

plotted in Figure �!! . Defining G k;v! = G'  k;v! + iG"  k;v! .



We now give the autocorrelation function of the system to non � stationary

input. force:

-i� ti-M2t2!
R  tl,t.2! = E[r tl!r t2!] = P  ~,v2!er 1'2 1 2 r d<uldz �0!

where P u	' a2 G  k;�1! G k; o2 +1'~2

Now, defining the mean square response as

i GJ -4U !t

r r �2!

Since the generalized spectrum of the input excitation can be written as

dtldt2 ' "1'i-"2"2!
P  hi, M2! = R  tl, t2! e P  e! S  ~�1! S  �2-a!

�m! �m! z
�3!

where R  t,t ! = e t ! e t !R  I! and R  x! has Fourier transform P  u!!, ands 1' 2 1 2 c  Q

dt -i   A!-ldl! t] dt2 -i  ld - d! t2
S  Lo-Q ! = e t ! e, S   u � u!! 2 e t2! e �4!

E r  t!  = I >  a! A t,v! ~ dz �5!

d d2 iLU2 t
where A t;u!! = 2 G k,tu2 S M2 40

27r 2 e

II. UNIT STEP ENVELOPE FUNCTION

When the envelope function e t! is a unit step function defined by q t!,

the integral representation of the unit step is defined in I6], page 1358, as

the following expression:

-4! t-t '!
q+ t-t'! i S �!!e ie t-t'! I gm e dw

�7!

Noting the functions �4! to be conjugate pairs when  u u, the substitution

of Eq. �4! into �2! gives the mean square response of the compressional

wave system



Then the frequency shif ted unit step envelope transformation function becomes

1 it u-u !S  u! -v! = Tt6 e -tu! + � � = e 2 q t! dt
e 2 2 i z -v!

2
�8!

Substitution of Eq. �8! into Eq. �6! and the evaluation of the resultant

integral gives

~ A t;u!!~ = ~G k,tu!   N t;u!!

where

B -A+v  dN t,|a! = 1 + I'1 t!+I'2 t! [ ] � 2I'> t! cosset � 2I'4 t! A sinet
A.

with I'1 t! e �+B/A sin2At!, I'2 t! = e sin At,-2Bt -2Bt

I'3 t! = e  cosAt +  B/A! sinAt!, I'4 t! = e sinAt.-Bt -Bt

�O!

�1!

Hence, the mean square response via Eq. �5! becomes

R[r  t}} J ~G k,v} I' N t,w}p� ro}de �2!

White Noise In uts: If the input noise is assumed white, then the spectral

density function P  v! becomes a constant P . So, the mean square response
Q 0

becomes

o -2' B 2BE[r  t!] p ~G k ~! ~ N t;~!dz = [1 � e �+ > sin2kt + sin'At!]
2BC

�3!

P  u!! ~ K 8 g +9 +e !/m z -u> !  z -z !

where M = A+i8 and e = -0+i8. Upon substitution of the spectral density3 4

for correlated noise in �4! into expression �2!, the mean square becomes

�4!

Efr  t!] = K [F1L1 t! + GlL2 t! + F>L3 t! � G>L4 t! ] �S!

where

Correlated Input Excitation: If the input excitation is assumed correlated as

indicated by R  t! = K e ' cosQv, this has the spectral density-el'~



B2 A2~2 g2L  t! [1 I  t! ]A/28 L  't! I 2 t! L3  ! [1 Il t! + I 2 t! ]
A

-2 [I'  t! + A I'4 t! ] e cos~t � 2 A/A! I 4 t! e sinQt], L4 t! = 2gQI'2  t! /A3

-2 [I'3 t! + 8 I'4 t!/A] e sinGt + 20 I'4 t! e cosQt/A-8 t -8 t
�6!

Q +g + d
1and F = Re[

1 2 2 2 2 dl  k!l u�!  u� UJ2!
]0/A F3 Re [ 1

  2  d2!   2  d2!

0 +8 + d
Gl = Imag [ 1

 d   d - d !   d - d !
j[]/A, G = Imag[ j1

  d'- d'!   d'- d'!

-i CO -4>! t
S   d2- d! = [ 1-e 2

] {vr 5  ~2-~! + I/i ~2-~! ]e �8!

Substitution of the last expression into Eq. �6!, we obtain

8 -A + d  h t, d! I ' = I G k; d! ~   M t; d! q t! +  I'1 t! -M t, d! + I 1 t-t'! + [ ] ~
A

~ [I'2 t!+I'2 t-t '! ]-2 [I'3 t! I'3 t-t'! +   d /A ! I'4 t! I'4 t-t'! ] os dt' + 2  /A! ~

[r  e! I'  e-t'! � r {t;t'! r  t! ]siam'! q t-t'!3 4 3 4

Hence, from Eq. �5! the mean square response becomes
�9!

E r  t!} I dtu ~G k;z!~ P  u}M t;w} for 0  t <t'

E r  t!} I E ~G k;z}~ P� z!hlr t,v! for t > t' �0!

where M t, d! is given by Eq. �9! and

M  t, ! = I'j  't!+I  't 't ! +  B A + !/A [I  t!+I2 t t !

III. RECTANGULAR STEP ENVELOPE FUNCTION

For a rectangular step envelope function of duration t', we have e t! =   t!-

-q t � t'! . Upon substitution into �4!, we obtain the rectangular step envelope
transformation function defined as



2 [I'3 t! I'3 t-t'! +    } /A ! I'4 t! I'4 t-t'! ]cos f}t ' + 2  f}/A! ~

~ [I'  t}I'  t-t'! � I'  t-t'!I'  t! ]sin~t'
3 4 3 4

White Noise In ut: If the input excitation is assumed white, then

E r  t!! = P I dto ~G k;to! M t;tu! for G < t < t'

E r  t! J = P I dto G k;td ~ M  t,a! for t > t'
The first integral is exactly Eq. �3! and the second integral is

�2!

E[r  t! ] =  T P /2BC !   Il t!+Ii 't 't ! + 2 B /A ! [I2 t! I2 t t ! ]

2 [I'  t! I'  t'! +  C /A ! 1'  t! I'  t'! ]I'3 t,-t'! + 2 C /A ! [�6/A! I'4 t! I'4 t'!

� I'  t!I'  t'! + 1'  t!I'4 t'!] I'4 t-t'!! for t t' �3!

Correlated In ut Excitation: If the input excitation is assumed correlated

then P   k!! is given by Eq. �4! . Upon substitution of Eq. �4! into Eq. �0!

and the evaluation of the resultant integral, we get

E [7  't! ] K [FlLj  t! + G L2  t! + F3L3  't! G3L4 t! ] for 0

E[r  t! ] = K [FlL l t! � G L 2  ! + 3 33 t! � G L44 t! ] fo t

where Lll t!  A/28!   [I'l t!+I'l t-t'! ] � 2 [ I'3 t!+ 8/A! I'4 t! ! I"3 t-t'!

-  B/A! I'3 t!+ 8 -A ! /A I'4 t! 	4 t-t'! ]I'3 t'! + 2 [  8/A! I'  t! +
3

 8 -A !/A I'4 t!! I'3 t-t'! �   8 -A /A ! I'3 t! + B  B -3A ! /A. ! I'4 t! !

~ I'  t-t'!]I'  t'! � [ I'  t!+�8/A!I'  t!!I'  t-t'! - �8/A!I'  t!+�8 -A /A'! ~
4 3,3, 4 3 ~ 3

' 14 t! ! I'4 t-t '! ] 1'4 t! !

~ I'  t-t'!]I'4 t'! j

L  t! =  A/8!    8/A! [I'2  !+I'2 t-t'! ] + [I'  t! I'3 t- '! �  I'  t!+�8/A! r «!! ~



g2~2pg2 g 2
j 3 t j t l  t 2 I2 t !] � 2[ I3 t! +  g/A! ~33 j.

A2

8 -2, +t'~ I'4 t! ! I'3 t-t'} �   9/A! I'3 t! + I'4 t! ! I'4 t-t'! ]e msQt' � 2 Q/A! ~
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B =  AT+2p"!k /2p is the tanporal attentuation constant. of the
th~viscoelastic nedium.

C = [ K~+ T 4 ! k /pj is the natural frequency of the ther'-viscoelastic
medium.

K' = Ec ~3c  j-2a!-Tg E
p p l is the temperature dependent the modulus of

the ccmpression of T.V.E.M.

is the campressional viscosity of the th~
viscoelas tie medium.

A" = !," + A"
T v te

is the tenyerature dependent ~essional
.velocity of T.V.E.M.

is the shear viscosity of the ~m-viscoelastic medium.

is the rmdulus of rigidity.

is the expected value of [ ].

is the envelope function.

is the noise function.

E[

e  t!

is the damping factor of campressional wave system of
the th~viscoelastic ~um.

B/C

is the ratio of the exponential decay coefficient of the
noise correlation function to the temporal attenuation
coefficient associated with the ccnpressional wave system
of the ther'-viscoelastic medium.

is the ratio between the natural danped facy of the
ccarpressional wave system to the facy of the noise
correlation function.

is the n~ of response cycles of the ccepressional
wave system of a th~viscoelastic medium.

Ct

g = ~  B/C! is the quality factor of the corrpressional wave system
of a thernn-viscoelastic medium.

.k  A"+2p".}
A = k[ K~+ � u'!/pj [ lad 3

44P  K'd+ � P'!
ad 3

is the damped natural fra~~~
of the therrm-viscoelastic
~dium



is the retarded response thermal Green's function for
the ~essional wave system of the therrto-viscoelastic
medium in tirade demain.

is the real  even! part of G k,t-t'! .

is the imaginary  odd! part of G k,t-t'! .

is the thermal Green's function for the cunpressional wave
system of the th~visccelastic mecum in frequency demain.

is the even  real! part of G k,u! .

is the odd  imaginary! part. of G k,u!! .

is a short notation for thermc viscoelastic m dium.

is the density of the rredium.

is the decay constant of the correlated noise.

is the harmonic frequency of the correlated noise.

is the response of the congressional wave systan of the
thermc viscoelastic m dium.

is the thermal ~sian coefficient.

is the thermal conductivity of T.V.E.M.

is the specific heat at constant pressure.

is the Poisson ratio.

is the Young's Rxlulus

  1+o 

1-a

K E
f71' H

F.F.T. implies fast Fourier transform



DISCUSSION OF IHE GRAPHS

Figures �-6!: In this ~le G k;t-t'! is the Green's function describing

the non~librium behavior of the ther'-viscoelastic medium. Specifically,

it gives the response to a unit impulsive ex~1 force at ture t'. G k; t-t'!

vanishes until an external force is applied. G k;t.-t'! is therefore called the

retarded response fmction, or Green's function. The function that describes

the solution which vanishes after the impulse is applied. The retarckd response

function as a function of temperature is plotta2 in Figure �! .

It is seen in Figure �! that the increase of the temperature of the

T.V.E.N.  these are retarded responses! ccz'respcnds to the decaying oscillations,

since AT' takes larger values; in turn, these increase the magnitudes of the

attenuatians as it is noted in Eq.  A,I-5! . In order to observe the underd~M
1oscillations, the inequal;Lty [k ~t+2p'! /p j ! [ XT'+ u"!k /2p] has to be

satisfied according to Eq.  A.II-4! . By using Hilbert and F.F.T. we can

separate the real part  this is the even function of tine!; i.e., G'  k,t-t'!

as well as the imaginary part  this is the odd function of time!; i.e.,

G"  k, t-t'! of the retarded Green's function which are illustrated in Figures

�! and �! . Similarly, for real u, the Green's function G k,~! is divided into

two parts: a dissipative response  this represents the imaginary part of G{k;~!

and it. is an odd function of frequency! denoted by G"  k,u>!,and a. reactive

response  this represents the real part of G k;~! and it is even function of

frequency! G'  k,co! are respectively illustrated in Figures �! and �! . Since

G k,e! is ccxrplex in ~, the absolute value is illustrated in Figure �! .

On all of the graphs, Figures �! through �3!, the ordinate axis represents

the normalized rms response of a th~viscoelastic medium given by

10



k At+2U ! .k AT+2Uv!
E r2  t! ! 4K P 4 kt+2U'} P

and the abcissa axis represents the n~ of response cycles of the ccrrpressional
wave system given by Ct.

Figures �-9!: These figures shaw that the behaviar of the system rms plotted
for various caves in  +'Q! as a function of temperature for the specific values
of the quality factor Q and far the specific values of 8/H. these figures
indicate that the damping values B/C of the mmpressional wave system effect
the stati~ value of the response as well as how quickly stationarity is
achieved. The larger damping values of lower Q values result in lower stat-
ionary values and the stean square response obtains stationarity in a shorter
dul ation.

Figures �0-12!: In these figures, we note that the middle curve has the
smallest value of the harmonic part of the correlated noise. In Figures
�0-12! we note that for a constant Q of the systan, the narmalized rms
increases as B/8 increases.
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APPENDIX I

It is well-kncam that. for the campressional wave parameters such as
t

c and K~, the effects of the ~rperature will came into the picture through

ve Tp�K~ + 4p'!
g I I   ! 2

te 1-o9~2

First briefly, we indicate that 1/I' = 1/K' � Tu /c results if we use
1 p

the ~11 relation within the appropriate Jacobian transfcxmation:

1 �V ! 3 VS! 3 TP! �V ! + T  av 

~T,P ~S,P YP ~ C 3T p

ad

using the definitions of   � ! = � � and  ~!BV 1 3V

3 P ~Tp 1
Starting with ~s. �.6!, �.7!,and �.8! of Eringen  reference  la! g

pages 1178-79, and 1180! after sane algebraic modifications, we get. the

following dissipated energy per unit volume and per unit mass:

~ . = � ~  »!'-2C d~-.'~~d«!' � Sd«'
diss

�!

where K" = A" + T g2

In order to extract the information which prescribes the terrperature

deperxfent viscous paranmter A~, it is necessary to understand the sound

the reversible therrmd~cs with the aid of the I4ucwell relations.  Hawever,

the Lame' shear parameters are not affected by the t~atures. !

It is shown that A", the ccxrpressional viscous parameter, has t>ro parts:

one part, i.e., A" is the usual well-kncwn temperature independent ccxnpressionalv

viscous parameter; the secand part, i.e., X" is the temperature dependent

ccxnpressional viscous parameter and is obtained via Onsager relation employing

a technique developed by Eringen and is given by the foll<wing expression:



dissipation in the isotrapic solids. The thermal condition part of the
energy dissipation on the solid is c~ = -   ./T!  VT! . Qn account of

the

viscosity, an armunt of energy 2c is dissipated per unit time and volund,
so that the total viscosity part of c~ is -2~ . Using the expression of

diss v

Eringen �.18} c = p"  d � > 6ikd<<! + ~ K"d<, adding these two terms,

Thus g   T To! = -TulK ' U< </~. Using also the re 1 ationship K ' = K ' = ~ad/c
~ '+2'�' 4

and K' /0 =   � ~ � !, we can write this result as

 T-T !cg'Dx>p c'- 3- c>! = -  <<4

Let us now consider the dissipation of ccmpressional sound waves. The

sound dissipation coefficient is defined as the ratic of the @can energy

dissipation to twice the mean energy flux in the wave. This cpantity gives

the manner of variatian of the wave arrplitude with time. The amplitude de-
-y I t-t'creases as e~' ~. Tus, we find the following expression for the terr@oral

attenuation for longitudinal waves.

] s
>/  E>

d1ss
�!

By substituting for the plane sound waves Uz = Uocos kz-ut!, Ux = U = 0.

we obtain Eq. �! .

To calculate the terrrperature gradient, we use the fact that sor. M

oscillations are adiabatic in the first appraxirration. Using the expression
S T! = S  T ! + K'elU<<, for the entropy, we can write the adiabatic con-

dition S  T ! = S  T! + K'ulU<<, where T is the temperature in the undef~

state. Fading the difference So T! o o ~ pcwers of   o, we have

o T o o T o ~ o/I!ToV V To! o'
The derivative of the en~ is taken for U<< = 0; i.e., at constant volute.



k [A" + 2p" + X" J
v v te

2p
�!

where Ed. = c . dV and E = c�f

'Ihe straightforward calculations, substituting farnaQ,ae �! and �! into

Kq. �!, we obtain



APPENDIX II

Iat us new discuss the Fourier Transform longitudinal part of G t-t';k! .

Upon transfarmatian, we then have

-i  t-t' !
G t-t';k! = e G [ !;k!, G [[!,k! = dx e G T;k!

A'+2p' A<+2p"
[-z +  !k + iz{ !k ]G{zpk! = l �!

We can write Equation �! with the aid of �! for s ~ 0 for c > 0, as

m2 +i[ ! {t-t' !
G t-t'; k!

[~ +  !k + i ]!  !k ]
P P

where the integratian is alang the real axis ar any path from -~ to +

the upper half plane.

Explicitly, the impulse function is given to be

� "+2p" ! k
G  t-t'; k! = n  t-t' ! exp [- 2p

 !t+2I'!' k2R2 k
2222 [  t-t'! k �- . ! ]

>t+2'4 L k2 g 2
! [l- � }

P P

 t-t'! ] ~

�!

when we put o instead of in the last transformation in Eq. �!, this

reflects the causal nature of G T,k! . It is also canvenient to detine G z;k!

which is a function of ~lex variable z = v+iE far z, either lower or

upper half complex plane accarding to the choice of the sign of the exponential.

The function G z;k! -+ G [ !;k! as c -+ 0 is clearly analytical and bounded in the

defined ~er or upper half z-plane. By the inspection of Equation �! in

the text, G z;k! satisfies  G z,k! represents longit~l part of Grem's

function!



 gll~2~II ! 2
where.k = and q t-t'! when t>t' and 0 when t  t'.T

4 At+2''!

For real ~, the Green's function, G v,k! is usually divided into two

parts. a dissipative part and a reactive part. In this case, and ncre

generally when the system is stationary, that is tine reversal invariant,

these are given respectively by the imaginary and real parts of G [0;k!,

and are denoted. as G"  z; k! and G'  z; k!, def ining G [0,k, X, p! = G'  z; k, A, p!

+ G"  [[[;kA,p! .

� [ ~T+2! "! k'/P]~
�a!G"  [o. k!

+ p + p
[k'  t !~']> + [~  !k ]

 A'+2p'!k /p
t

�b!G'  [[[;k!
+ p $1I +2 [I

[k   ! ! + [  ~k ]
P P

-iG"  t-t';k,A, p! d[d G�  k! LM t t !
27[

= -i exp[- ! "+2q'!k /2P ~ t.-t' ~ ]

sin[ t-t'!k !['+2p'! /P �-k k /P! ]
�a!

t+24' i k~g~ i
2k  !  l !

P P

Likewise, the Fourier transfc[rm of Equation �b! is the real even function

of  t-t'! .

The Fburier transform of Equation �a! is the imaginary odd function of tinm.

Hence, we have



APPENDIX III

Linear regression equations  of a Voigt. solid rxdel! may be adopted for

a viscoelastic maiium following the procedure developed by De Groot and Nazur I'4j

" 'o0 0

0 0 u gB u,B
3 L L �!

Substituting �! into Eq. �!, we obtain the second order differential equation

a2 'o'o, a u,B u .B~ 0+ D k QQTQ + tllL QSTS
I �!

Multiplying this equation with u and averaging over the equilibrium
0

distribution f u,B !, we obtain according to the definition of R  seeu' 0 uu
details for De Groot and Mazur, pages 140-143!

R = JJJJ n a f cx,   !P w,   / n,8;Tjdn c19 dcdB �!

the differential equation

�!

Equation �!, which is essentially the equation of the damped hamnnic
oscillator, has the general solution

 c! = e  c cosGT + c slnQT!, w > 0uu l 2 �!

where cl and c2 are constants, and where

and S2 =  ~ -B~!B =~Dk1

�!

The farmlae are written fcr the case that 0 is real  the "urderdaTryed
case" ! . If Q is imaginary  overdanped case!, put 0 = iQ, and replace in the

a 7'

where B = DLk

u,B
~Sa T!

ax

R  T! +B R  T! +~R  T! =Op T0uu 8 'T uu uu



above equation cos iA, T by cosh Ale and sin iBlT by i sinh Glx. By
employing the Boundary condition R �! = R, we find from �! that

BQ 0

c = R
1 o

an. the other hand, since

It follows from �! that

Bcl
2

'Ihe correlation function R  T! is therefore of the form

R  I! = R e  cosQT + � sinQy! T>08
 XQ 0

Since R  v} must be an even function of x, we have for all times

R� .! = R  .! = R e

Noise correlation R  T! = R  T! = R e I ~ costa is given in the text.



G'  t.-t kg AP P! = 2 [G t-t' I k."<P! + G t'-t'k. ~.P! 1

T+2P"
= exp[   !k'~t-t'~ ]

P

1 1@sin [ ! t- t ' ! k  At+2' ' 9 /p
I

 l-k.i /p! ]
�b!

A '+2

k  ! �- !
k'Zz ~

P

Since the response is causal, or equivalent by, since G z;k!, which we

have defined to be analytic in the upper of lair half plane, the real and

imaginary parts of G ~;k! are related by Hilbert Transform accarding to the

relations  see De Groot and Nazur [4]!,

4! - d

ff   ! I dv G'  vg k/ Xp p!
Tr

-4!

where "P" implies principal value integral; that is, an integral ~trical

about the singularity.
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