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ABSTRACT

The mean square wave response of a lightly damped thermo-viscoelastic
medium to a special type of non-stationary random excitation is determined.
The excitation function on the thermo-viscoelastic medium is taken in the
form of a product of a well-defined, slowly varying envelope function, and
a part which prescaribes the sﬁatistical characteristics of the excitation.
Both the unit step and rectangular step functions are used for the envelope
function, and both white noise and noise with an exponentially decaying
harmonic carrelation function are used to prescribe the statistical property
of the excitation. By taking into consideration the slow variation envelope
)function and the wave characteristics of the lightly damped thermo-viscoelastic
medium, the mean square response (as a function of temperature, excitation,
and damping parameters with the aid of 'reversible and irreversible thermo-

dynamics) is evaluated.



INTRODUCTION

A number of recent papers have considered the response of dynamic
systems to random excitation. However, the appropriate theory is well-
known for calculating the means quare response of linear systems to both
stationary and non-stationary random excitation [1,2,3]. We consider here
the mean square of waves of a thermoelastic medium to non-stationary random
excitation.

The non-stationary randam excitation is of the form:

s(t) = e(tla(t)
where e(t) is a well-defined envelope function and a(t) is Gaussian narrow
band stationary statistical part of the excitation which has zero mean. The
non-stationary precess is generated by mulitplying the sample functions from
a stationary process o(t) and the deterministic function e(t).

In this investigation, it is shown that for the linear approximation, the
partial differential equation which prescribes the characteristics of a thermo-
viscoelastic medium may be reduced to a well-known classical damped harmonic
oscillator model by applying the four—dimensional Fourier-Hilbert transfarm.

The transport coefficients of a thermo-viscoelastic medium can be class-

t
ified as (i) compressional wave parameters such as CL2 and Kéd (Ka'd is expressed
in terms of Lame' coefficients as Kz:\d = )\t': + %-pa'd ), and (ii) compressional

and shear viscous parameters such as A,E. and p”.

It is further shown that )\,R, has two parts; i.e., )\'; is the usual well-known
temperature independent compressional viscous parameters. The second part,
)\;':e, is the temperature dependent compressicnal viscous parameter and is obtained

via Onsager relations by employing a technique developed by Eringen [la].



Eringen's thermo-viscoelastic theory (within the framework of linear
irreversible processes is applicable to the Kelvin-Voigt solid) has a different
purpose [lc] than what we have in this investigation (We are not interested in
heat conduction phenomena, reversible or irreversible). Our purpose in this
investigation is to determine the acoustical mean square response of a thermo-
viscoelastic medium and how the campressional sound waves dissipated in this
medium, by using this information to prescribe the macroscopic properties of

the viscoelastic materials.



I. EVALUATION OF GREEN'S FUNCTION APPROPRIATE FOR
THERMO-VISCOELASTIC COMPRESSIONAL WAVES

Equation of motion for a thermo-viscoelastic medium with a forcing term
fi can be written as
paiui - Gut® at) 2)2“11 - (KédH\" 3t+u'/3+u" at) ai aﬂ,uﬂ, = pfi (1)

and rearranging the term, we obtain

1
Lyguy = £y where Lyy = (K1 3 4 00 /01 3 3 LQu+u"3) R /praalsy . (@)

The tensor Green's function for the field equation (2) is written as:
-+-+'. e = —>-+' et
LijGjm(r r';t-t') Siuﬁ(r ") (e-t") (3)

Using the Fourler temporal and three-dimensional spatial transforms, Eq. (3)

is transformed to k,w domain and reads as follows:

Towy = pl 2,2, ., 2 g L tzy2 .0t 2 2
Gyp(k;®) = Py /(CTk*+iDpk*w-w?) + PSp/ (€ K D K 0-u?) (4)

L

= n L. " n T = - 2 = 2
where D, /o), D= B(\pr2u™ /o, P (5j k. k_/k?), P kjkm/k ,

J m i m
t

C; = (u'/p), andCi‘(K;d+% H')/p. We may invert Equation (4) by using inverse

Fourier transform and we obtain the retarded temsorial Green's function in the

k,t domain:

-D;kz(t-t') sin[C;k(l—gzkz/D)%(t—t')]

s , T
G, (kjt-t') = n(t-t'y {p
im ) jm e C;k(l-gzkz)/p);i

L —Dikz(t—t') sin[Cik(l—hsz/p)%(t-t')]
+ P.m e - L } (5)
d CLk(lqhzkzlp)

where g* = W"/4u' , W% = (AT2u") 2/ 4 (KL g+ 4u'/3)

The displacement equation for the compressional wave system for the thermo-
viscoelastic medium in k,w and k,t domain can be deduced from Eqs. (4) and (5).
By taking traces of Eq, (4) and (5), we easily separate the compressional

responses from the tensor Green's functions which are given in the following:
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1 D K2 (t—t ")
Glkyw) = : T , Gk, t-t") = n(e=te .
csz?+iwDLk2-m2

t 1
sin[chcl-hzkz/p? (t=t') )

L] (6)
cik(l-hzkzlp)11

where n(t-t') = 1, when t > t' and 0 then t <t'(see Appendix II).

For real w, the Green's function is usually divided into two parts: a
dissipative part and a reactive part. In this case, these are given respectively,
by the imaginary and real parts of G(kjw) and are denoted as G"(k;w) and
G'(k;w) (as illustrated in Figures (4) and (5), and G(k,t) is

plotted in Figure (1)). Defining G(k;w) = G'(k;w) + 1G"(k;w).
6" (k;w) = ~DIkPw/ (CF2kP-0?) 2uDTk?) 2, 6 (ksw) = (Cf2k2-w?)/(Cp 2k -w?) 2+ (uD k?) 2

(7)
By taking the Fourier transform of Eqs. (7), we obtain

1
prk?[e-t']  sinfCk(1-hk?/p) (t-t") ]
G'(k,t=-t') = e

L
2 k(1-h%k?/p) 2

_nszlt-t'] sin[ka(luhzkz/p)%]t—t'|]
G'(k,t-t') = e m 1 (8)
2ch(1-h2k2/p)

which are illustrated in Figures (2) and (3).

Defining the external input excitation as s(t) = e(t)a(t), we can write

the compressional wave system response as
- ¥
r(t) = J dt' s(t")C(k;t-t') = J 9 6w s (e T ©)

In this paper, we shall determine the mean square response E[r?(t)] when
e(t) is a unit step as well as a rectangular step function and a(t) has the
correlation functions: Ra(T) = ZWKbé(Tl for the white noise; and

Ra(T) = KOE_BlTlcosQT for the correlated noise. Here, T is the time difference

=Y



We now give the autocorrelation function of the system to non-stationary

input force:
—i(mltl—wztz)

Rr(tl’tZ) = E[r(tl)r(tz)] = IJ Pr(ml,wz)e dwldm2

%
where Pr(wl,wz) = G (k;wl)G(k;wz)Ps(wl,wz)
Now, defining the mean square response as

i(wl- 2)t
E[x2(t)] = Rr(t;t) = jj Pr(ml,mz)e dwldwz

Since the generalized spectrum of the input excitation can be written as

dtldt2 i(wltl-mztz) j dw

P (w,,w,) = R (tq,t,)e
8 1 2 JJ (27]') 2 s 1 2 (2_”_) 2

(10)

(11)

(12)

Pa(m)se(m—ml)se(wz-m)

(13)

where Rs(tl’tZ) = e(tl)e(tZ)Ra(r) and RG(T) has Fourier transform Pa(uu, and

dt1 —i(m-wl)tl 2
Se(u:-—wl) J R e(tl)e s Se(wz—w) = f T e(tz)e

Noting the functions (14) to be conjugate pairs when wy

of Eq. (14) into (12) gives the mean square response of the compressional

wave system

Efr?(t)] = J Pa(m) | A(t,w)l2 dw
duw ) iw

2
-'-2'—_n"-"'" G(k, U..'lz) Se(mz-—-w) e

where Ati;w) = J

-

II. UNIT STEP ENVELOPE FUNCTION

(14)

= wz s, the substitution

(15)

(16)

When the envelope function e(t) is a unit step function defined by n(t),

the integral representation of the unit step is defined in [6], page 1358, as

the following expression:

o~ lw(t-t")
2T

Nyt = s [ g s ete(eeh J 4 S | & ea/mmms @)etutee

(17)



Then the frequency shifted unit step envelope transformation function becomes

Se(wz—m) = 76 (W, ~-w) + n{t)de (18)

) 1 - J eit(w—wz)

i(wz—m)
Substitution of Eq. (18) into Eq. (16) and the evaluation of the resultant

integral gives

| Mtsw) |2 = |6k, w) |2 M(t;w) (19)
where
M(t,w) = 1 + T, (£}+T (t)[EE:éEi@iq - 2l (t)coswt - 2T, (t)—— sinwt (20)
0 1 2 A2 3 4 A

with T () = e 25 (14B/A sin2at), Iy(t) = e”2BE gin2pr,
ry(t) = e Bt (cosAt + (B/A)sinAt), () = e fsinat, (21)

Hence, the mean square response via Eq. (15) becomes

E[r®(t)] = J leCk,w) |* u(e,0) P, (w)dw (22)

White Noise Inputs: 1If the input noise is assumed white, then the spectral

density function Pa(m) becomes a constant Po' So, the mean square response

becomes

oo mP 2
-2B B ., 2B .
E(x?(t)] = P J |G (k;w) | *M(tyw)dw = —2 [1-e t(1_+ % Sin2At + — sin’At) ]
© 2BC2 ‘ a? (23)

-0

Correlated Input Excitation: If the input excitation is assumed correlated as

indicated by RG(T) = Koe-BlTlcosQT, this has the spectral density
P (W) = K B(B2+%+uw?) /7 (w2 -w?) (w2-u?) (24)
o o 3 4
where Wy = 418 and w, = -{#+i8. Upon substitution of the spectral density
for correlated noise in (24) into expression (22), the mean square becomes

E{r2(t)] = K [F1L1 (8) + 6L, (t) + Falg(t) = G4L,(t)] (25)

where



_ . _ . BZ_AZ_H'ZZ_BZ .
Ll(t) = [l—Fl(_t)]A/?.B, Lz(t) = Fz(t), L3(t) [1+1‘l(t) + -—-—;;_—-——~ 12(!:)] -

~2(T5(e) + § T, (6)1e™ feostte - 2@/M)T () e Catnaey; L,(t) = 2807, (t) /A2 -
-2[F3(t) + BFA(t)/A]e_Btsith + 2Q Fa(t)e_ﬁtcosﬂt/A (26)
92+B 2+w2
1 2 1
and Fl = Re]| — - B/A°, F3 = Re| — —
Wy (wl~w3) (w3—_w2) (w3—wl) (w3—w2)
P48 P 1
Gy = Imag(—— ———I8/A* , G, = Imagl ) (27)
wy (W) -wg) (Wy~w, (wy-w]) (w3-wy)

ITII. RECTANGULAR STEP ENVELOPE FUNCTION
For a rectangular step envelope function of duration t', we have e(t) = n(t)-
-n{t-t'). Upon substitution into (14), we obtain the rectangular step envelope

transformation function defined as

~1{w ~wt'
Se(wz-m) = {l-e 1w § (wy-w) + l/i(wz—w)] (28)

Substitution of the last expression into Eq. (16), we obtain

[ACE,w) |2 = Je(k;w) |2 {M(t0In(e) + (I (e)-M(t,w) + T\ (t-t') + [BZ-A2+m2]
1 1 ——iZ;~——

[Ty ()47, (e-t ") 1-2 [T () Ty (e-t") + (wz/Az)F4(t)F4(t-t')]cosmt' + 2(w/A)
-[F3(t)P4(tvt') - P3(t-t')P4(t)]5inwt')n(t-t') (29)
Hence, from Eq. (15) the mean Equare response becomes

E(r?(t)) =j dw |G(k;w)|2Pa(w)M(t;w) for 0< t <’

-0

E[lr?(t)] = J duw IG(k;w)lzPa(w)Mr(t,w) for t > ¢! (30)

-— 0

where M(t,w) is given by Eq. (19) and

M .(t,w) = Ty ()47 (e-t') + (52-A2+m2)/A2rrz(t)+r2(t-t')1 -
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- 2[T3(t)F3(t-t') + (wZ/Az)Fa(t)Fq(t—t')]coswt' + 2(w/A) -
. [F3(t)F4(t—t') - F3(t—t')T4(t)]sinwt' (31

White Noise Input: If the input excitation is assumed white, then

E[?(t)] = P, J do |G(k;w) |®M(t;w) for 0< t< ¢t

-0

Efr?(t)) = P_ I dw [G(k;w) |?M _(t,w) for t > t!' (32)

The first integral is exactly Eq. (23) and the second integral is

E[r?(t)] = (NPO/ZBCZJ{ T ()T (e-t") + 2(B2/A2)[F2(t)-F2(t—t')]
- 2050 T(e) + (czlAz)Fa(t)PA(c';Jr3(t-t') + 2(CR/A%) [(2B/R) T4 (1) Ty (t")
- F4(t)P3(t') + F3(t)F4$t')] Fa(t-t')} for t > t' (33)

Correlated Input Excitation: If the Input excitation is assumed correlated

then Pa(uD is given by Eq. (24). Upon substitution of Eq. (24) into Eq. (30)

and the evaluation of the resultant integral, we get

Efr?(t)]

Ko[F 1 (8 + 6 1k (t) + Fala(t) = GL ()] for 0 <t _ ¢!

Efr?(t)]

KUEF Lll(t) 6) 22(t) + F3L33(t) = Ol (D)) for & > ¢!
where L., (t) = (A/2B) { (I (£)+T, (t-t ) - 2UT3(E)+(B/AYT, () ) T4 (t-t")
-((B/A)F3(t)+(B2-A )/Azra(t))FA(t ~t)IT4(e") + 2[((B/A)T,(t) +

(BZ-A )/Azr () Ty(e-t?) - ((Bz_Az/A IT3(t) + BO(B*-34%)/A7)T (£))

* T, (e=t)IT, (") }
L,,{t) = (A/B) {(qlA)[r2(§)+r2(t-t')] + (M) Ty(e=t") - (FBFt)+(ZB/A)T4(t)) .

Tt IT(eY) - LT3 () +(2B/A)T, (0))T 4(t-t") - ((ZB/A)T4(£)+(3B*-A%/A%) -

. r4(t))r4(t-;')1r4(£) }



B%-p24+02-p2

Lyylt) = T (1) + I‘l(t-t') + N )[Fz(t) + Tz(t-t')] - 2[(1‘3(1:) + (B/A) ¢

2_02 '
*TAENT(et) — (B/MT4(8) + 22 1, (6T, (b)) Je P cosats - 2(0/m) -
AF

C T T3t - (D300 + (BT, (6T, (t-t") 1e B sinoe
Ly, (t) = 2{3—? [T (8 + Tp{t-£0] = [(T3(t) + (B/AIT(E)T5(tt") - (- Ty(p) +

82_92
A2

Lo T (et 1%P singet + @/8) [ry(0 Ty (et - (ry(0) + (8/m) -

LT )T, () Je P cosat )



A= Kk[(K g+ %— u) /el 2 (1= ] is the damped natural frequency

GLOSSARY OF SYMBOLS

2¢ym ny 2
k ()\T+211.) $e

of the thermo-viscoelastic

v 4
S Kogt 307 medium.

B = (Ar+2u")k?/2p is the temporal attentuation constant of the
thermo~viscoelastic medium.
C= [(K! + 4 u')kz/p}]ﬁ is the natural frequency of the thermo-viscoelastic
ad’ 3 X
medium,
K!y = Ec p/3c:p(l—2‘o) ~TaiE is the temperature dependent the modulus of

Ap = AL+ AY

t 4
2 _ ) =
G = (Kgh 3

e(t)
a(t)

B/C

B/B

A/f

Ct

Q= 5 (B/C)

u')/p

the campression of T.V.E.M.

is the compressional viscosity of the thermo—
viscoelastic medium.

is the temperature dependent compressional
velocity of T.V.E.M.
is the shear viscosity of the thermo-viscoelastic medium,
is the modulus of rigidity.
is the expected value of [ .
is the envelope function.

is the noise function.

is the damping factor of compressional wave system of
the thermo-viscoelastic medium.

is the ratio of the exponential decay coefficient of the
noise correlation function to the temporal attenuation
coefficient associated with the conpressional wave system
of the thermo-viscoelastic medium.

is the ratio between the natural damped frequency of (the
compressicnal wave system to the frequency of the noise
correlation function.

is the nunber of response cycles of the compressional
wave system of a thermo-viscoelastic medium.

is the quality factor of the compressional wave system
of a thermo-viscoelastic medium.

8



Gk, t~t")

is the retarded response thermal Green's function for

the comressional wave system of the thermo—viscoelastic
medium in time dawain.

F.F.T.

G' (k,t-t") is the real (even) part of G(k,t-t').
G"(k,t-t") is the imaginary (odd) part of G(k,t-t').
Gk,w) is the thermal Green's function for the canpressional wave
system of the thermo-viscoelastic medium in frequency domain,
G' (k,w) is the even (real) part of G(k,w).
G" (k,w) is the odd (imaginary) part of G(k,w).
T.V.E.M. is a short notation for thermo~viscoelastic medium.
p is the density of the medium.
R is the decay constant of the carrelated noise.
Q is the harmonic frequency of the correlated noise.
r{t) is the response of the compressional wave system of the
thermo-viscoelastic medium.
oy is the thermal expansion coefficient.
K is the thermal conductivity of T.V.E.M.
Cp is the specific heat at constant pressure.
o] is the Poisson ratio.
E is the Young's Modulus
ka’Tp (K! 4 u'y
A = 1 ad 3 ( 140 )2
te 92 1-¢
P
. _ _Eo . . E ‘o E
M errmmmey M T rmer 0 K emr—
o - l(Bui +3u_i) 5 =3u£
1j 2 "9 xj 3 Xy N §2 ) Xy

implies fast Fourier transform



DISCUSSION OF THE GRAPHS

Figures (1-6): In this example G(k;t-t') is the Green's function describing

the non-equilibrium behavior of the thermo-viscoelastic medium. Specifically,
it gives the response to a wnit impulsive external faorce at time t'. G(k; t-t'")
vanishes until an external force is applied. G(k:t-t') is therefore called the
retarded response function, or Green's function. The function that describes
the solution which vanishes after the impulse is applied. The retarded response
function as a function of temperature is plotted in Figure (1).

It is seen in Fiqure (1) that the increase of the tenmperature of the
T.V.E.M. (these are retarded responses) corresponds to the decaying oscillations,
since Ay takes larger values; in turn, these increase the magnitudes of the
attenuations as it is noted in Eq. (A.I-5). In order to abserve the underdamped
oscillations, the inequality [k()\t':+2u');§/p15] > [ + u"Yk2/2p] has to be
satisfied according to Eq. (A.II-4). By using Hilbert and F.F.T. we can
separate the real part (this is the even function of time); i.e., G'(k,t-t")
as well as the imaginary part (this is the odd function of time); i.e.,
G" (k,t-t") of the retarded Green's function which are illustrated in Figqures
(2) and (3). Similarly, for real w, the Green's functicn G(k,w) is divided into
two parts: a dissipative response (this represents the imaginary part of G(k;w)
and it is an odd function of frequency) denoted by G"(k,w),and a reactive
response (this represents the real part of G(k;w) and it is even function of
frequency) G'(k,w) are respectively illustrated in Figures (4) and (5). Since
G(k,w) is camplex in w, the absolute value is illustrated in Figure (6).

(n all of the graphs, Figures (7) through (13), the ordinate axis represents

the normalized rms response of a thermo-viscoelastic medium given by

10



K2 (Ag+2u) [ k2 (A2 2
—— []~

Y IER%(1)]*
KoP 40 +2u')p

and the abcissa axis represents the number of response cycles of the carpressicnal

wave system given by Ct.

Figures (7-9): These fiqures show that the behavior of the system rms plotted

for various curves in (A/Q) as a function of tamperature for the specific values
of the quality factor Q and for the specific values of 8/B. 'These figures
indicate that the damping values B/C of the compressional wave system ef fect
the stationary value of the response as well as how quickly stationarity is
achieved. The larger damping values of lower Q values result in lower stat-
ionary values and the mean Square response obtains stationarity in a shorter

duration,

Figures (10-12): In these figures, we note that the middle curve has the

smallest value of the harmonic part of the correlated noise. In Figures
(10-12) we note that for a constant Q of the system, the normalized rms

increases as B/ increases.

11



(1a)

(1b)

(1c)

{2a)

(2b)

(3)

(4)

(5)

(6)
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APPENDIX I

It is well-known that for the campressional wave parameters such as
t
cZ and K'

L d the effects of the temperature will come into the picture through
the reversible thermodynamics with the aid of the Maxwell relations. (However,
the ILame' shear parameters are not affected by the temperatures.)

It is shown that A,}, the compressional viscous parameter, has two parts:
one part, i.e., J\\'} is the usual well-known temperature independent campressional
viscous parameter; the second part, i.e., )\Ee is the temperature dependent
compressional viscous parameter and is obtained via Onsager relation employing

a technique developed by Eringen and is given by the following expression:

2 1 1
Kolep(3Kad + 4p") 4o ., .
() (1

%

First briefly, we indicate that LKy = VK - 'I‘ai/cp results if we use

Mo =

the Maxwell relation within the appropriate Jaccbian transfarmation:

Sl @Y, __3ws) amp) _ av, 1 av,,
' 0P oT,P} a(S,P) apP C aT
Kad S P P
: — 3V, _ 1 SV, _
HS.'Lng' the definitions of (-§P_)T = *'I<—| and ('Q—T-—')P al.

Starting with Egs. (4.6), (4.7),and (6.8) of Eringen (reference (la),
pages 1178-79, and 1180) after same algebraic modifications, we get the
following dissipated energy per unit volume and per unit mass:

. _ K 2 1] 1l 2 n 2
£ = - (VD) *-2p" (A, - w8..d,,)2 - K'd (2)
dies | T ik~ 3%ix%ee) "~ Ky

where K{'} = )\{'{ + g- u"} .
In order to extract the information which prescribes the temperature

dependent viscous parameter A;:e’ it is necessary to understand the sound

1



dissipation in the isotropic solids. The thermal conduction part of the

energy dissipation on the solid is éthe = =(k/T) (VT)? . On account of

viscosity, an amount of enexgy 2év is dissipated per unit time and volume,

so that the total viscosity part of & diss 1S -—Zév. Using the expression of
: . m 1 2 1 " 2 :

we obtain Eq. (2).

To calculate the temperature gradient, we use the fact that sound
oscillations are adiabatic in the first appraximation. Using the expression
S(T) = 8,(T) + K'a Uy, , for the entropy, we can write the adiabatic con—
dition SO(TO) = SO(T) + K'alUM, where T, is the temperature in the undeformed
state. Expanding the difference So (1) - So(T,) in powers of (T-T,), we have
as far as the first-order terms SO(T) —SO(TO) = ('I'-TO) (9 SO/B TO)V= cv(T-TO)/TO.

The derivative of the entropy is taken for Upg = 07 i.e., at constant volume,

Thus, (T-TO) = '"TO‘J_K'UJLR/CV' Using also the relationship K' = K:;.so = cvl(éd/cp
] 1 1
and Ka-lxd/p = (A ;2;1 - g— g ) , Wwe can write this result as

2_ 4 a2y _ _
(T—To) cp/Talp(cL T Cp = Upg (3)
Iet us now consider the dissipation of conmpressional sound waves. The
sound dissipation coefficient is defined as the ratic of the mean energy
dissipation to twice the mean energy flux in the wave. This quantity gives
the manner of variation of the wave amplitude with time. The amplitude de-
|
Ccreases as e_Ylt t l Tus, we find the following expression for the temporal
attenuation for longitulinal waves.
l L
Y= 5= <E >/ <E> (4)
. diss
By substituting far the plane sound waves U, = U,cos (kz~uwt), U, = Uy = 0.



The straightforward calculations, substituting formulae (2) and (3) :into

Eq. (4), we obtain

k2

2p
where E

E 4 iag = m €gieg @V and E = J” edv .

y = (g + 200 + A0 ] (5)



APPENDIX II

Let us now discuss the Fourier Transform longitudinal part of G(t-t';k).
Upon transformation, we then have

—-- — l o 1
B 6wk, Gk = J dt e™Ta(r;k) (1)

—c0 Q

G(t-t';k) =

when we put o ihs‘oead of == in the last transformation in Eq. (1), this
reflects the causal nature of G(t,k). It is also convenient to define G{z;k)
which is a fimction of complex variable z = wtie for 2z, either lower or

upper half complex plane according to the choice of the sign of the exponential.
The function G{(z;k) —» G{w;k}) as € + 0 is clearly analytical and bounded in the
defined lower or upper half z-plane. By the inspection of Equation (1) in

the text, G{z;k) satisfies (G(z,k) represents longitadinal part of Green's

function)

)\l+2ul }\II+2U"

tp k2 + iz(— Y )k?]1G(z:k) = 1 (2)

[-2%+(
We can write Equation (1) with the aid of (2) for € >~ 0 for € > 0, as

: ey |
e-l-lw(t t')

A P2 LA AT (3)
——p—-—-—)]-:2 + iw(—-—-—a—-—-)kzl

G{t-t';k} = J gi—;

00

- [_m2+(
where the integration is along the real axis or any path from -~ to += in
the upper half plane.

Explicitly, the impulse function is given to be

(A,;,%-Zu")kz
G(t-t';k) = n(t-t')expl % (t~t')] -
1
(Al+2u") %
sin[ (t-t")k t r (1~ .kzzz }!5]
X p* P | (4)
Al+2ut 2
k(=% - kpzz]li



AL 2
{A uv)

T
4()\t+2u')

where 22 = and n(t-t') when t>t' and 0 when t< t'.

Far real w, the Green's function, G(w,k) is usually divided into two
parts: a dissipative part and a reactive part, In this case, and more
generally when the system is stationarj, that is time reversal invariant,
these are given respectively by the imaginary and real parts of G(w;k),
and are denoted as G"(w;k) and G' {w;k), defining G(w,k,A,u) = G (w;k, A, 1)

+ G"{wrkX, ).

~[Op+2u) K /ol
P Ty R
o

)_NZ]Z + [w(____E_____)RZJZ

I

G" (w; k) (5a)

[k (

(J\'+2u')k2/p - w?
G'{w k) = 7 +2 T u +2 W (5b)
[kz(-E;B-——a—u 12 + [w(—-—-——~9k2]2

The Fourier transform of Equation (5a) is the imaginary odd function of time.

Hence, we hawve

. o
-iG" (t-t';k, A, ) = r g% G (w; k) e tw(t-t")

-

= -1 exp[-(\+2") x* /20 |t-t']| ]

sin[(t-t ) k(A+2u") Yo (1-k212/0) %) (6a)

Al +2u
:ak(-~————)lﬂ (1- ]%—)

Likewise, the Fourier transform of Equation (5b) is the real even function

of (t-t").



APPENDIX III

Linear regression equations (of a Voigt solid model) may be adopted for

a viscoelastic medium following the procedure developed by De Groot and Mazur [4)

Q o} ¢4 rB
24l = B 0 @
: O‘o'Bo . (IopBO o ’BO
-——-—-3:T} = _-wLZ (1) - DLk2 GO (2)

Substituting (1) into Eg. (2), we obtain the second order differential equation

2 a. B a8 a..B,. _
0 - —m)— [ehiil e} + DLkz 381_ —a—(?)— o0 + sz —a?)—— oo =0
91T (3)

Multiplying this equation with a and averaging over the equilibrium
distribution f(uO,BO) » we obtain according to the definition of Raa (see

details far De Groot and Mazur, pages 140-143)

R = jJJJ o, f(aO.BO)P(mo,BO | a,8; 1)do, 8 dodB (4}
the differential equaticn
3 2

3 12
where B = 1‘.’)1._|k‘Z

3 2 -
Raa(’l') + B e Raa(r) +oap Rozoe(T) =0, ™0 (5)

BEquation (5), which is essentially the equation of the damped harmonic
oscillator, has the general solution

Ruu(T) = e"E’T(_c:L cos{it + ¢, sinQt), T > 0 (6)

where ¢ and ¢, are constants, and where
B = —x- D k2 and Q= (w2 —32)* (7)
T 2L B

The farmulae are written for the case that  is real (the "underdamped

case"). If Q is imaginary (overdamped case), put Q = i, and replace in the



above equation cos i,T by cosh f¢;7 and sin inT by 1 sinh Q

an the other hand, since

dR_ (1)
8153 _ "
=0

It follows fram (6) that

The correlation function R aa(T) is therefore of the form

R(m(T) = RoeqST(CosQT + % sinQt) >0

Since RM(T) rust be an even function of 1, we have for all times

Ph(T) = Rcm(T) = Roe_B|T| COsT

Noise correlation R, (1) = Ry (T = ROe“BITI cos{iT is given in the text.

41
employing the Bourdary condition Rfm(O) =R, we find from (6) that

(8)

(9)

(10)

(11)



G' (t—t';k,}\,U) = "‘%"[G(t‘tlfkr}\lU) + G(t'—t;kr)\rU)]

A"+2u"
T
= exp[—(p—Y-)k" 't—t' | ] .

. et PUT I 202 4.8
_sinflest! kA2 ¥ /0% (k2207 (65)
>\I+2U|
R(CE g KA
p P

Since the response is causal, aor equivalent by, since G(z;k), which we
have defined to be analytic in the upper of lower half plane, the real and
imaginary parts of G{w;k) are related by Hilbert Transform accarding to the

relations (see De Groot and Mazur [4]).

t

Prdw' G"(w; k, A, 1)
Ll ]
» w'=-w

G' (w; k)

G" (w; k)

5 J‘” dw G’ (wik, A, p)
i

w' -

where "P" implies principal value integral; that is, an integral symmetrical
about the singularity.
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